Pythagoras' Theorem

1. In the figure, $\triangle ABC$ is a right-angled triangle such that AB = (x + 3) cm, BC = (x + 1) cm, AC = (x + 5) cm and $\angle ABC = 90^{\circ}$. Find the value of x.

- 2. $\triangle XYZ$ is a right-angled triangle such that XY = (2a b) cm, YZ = (a + 2b) cm and $\angle XYZ = 90^{\circ}$.
 - (a) Show that $XZ^2 = 5(a^2 + b^2)$.
 - (b) Hence, given that $(a + b)^2 = 141$ and ab = 8, find the length XZ.

Adapted: Secondary 2 Mathematics Tutorial 2B © Singapore Asia Publishers Pte Ltd & Lim C.K. All rights reserved. Reproducible for home/classroom use only. STRICTLY NOT FOR SALE. Look for other useful resources: www.sapgrp.com

Solutions to

Pythagoras' Theorem

1. Since $\triangle ABC$ is right-angled, by the Pythagoras' Theorem,

 $AC^{2} = AB^{2} + BC^{2}$ $(x + 5)^{2} = (x + 3)^{2} + (x + 1)^{2}$ $x^{2} + 10x + 25 = x^{2} + 6x + 9 + x^{2} + 2x + 1$ $x^{2} + 10x + 25 = 2x^{2} + 8x + 10$ $x^{2} - 2x - 15 = 0$ (x - 5)(x + 3) = 0 $x - 5 = 0 \quad \text{or} \quad x + 3 = 0$ $x = 5 \quad \text{or} \quad x = -3 \quad (\text{rej.})$ $\therefore x = 5$

Note: x = -3 is rejected because BC = -3 + 1 = -2 cm, which is impossible.

2. (a) Since $\triangle XYZ$ is a right-angled triangle, by the Pythagoras' Theorem,

$$XZ^{2} = (2a - b)^{2} + (a + 2b)^{2}$$

= (2a²) - 2(2a)(b) + b² + a² + 2(a)(2b) + (2b)²
= 4a² - 4ab + b² + a² + 4ab + 4b²
= 5a² - 4ab + 5b² + 4ab
= 5a² + 5b²
= 5(a² + b²) (shown)

(b)
$$(a+b)^2 = 141$$

 $a^2 + b^2 + 2ab = 141$
 $a^2 + b^2 + 2(8) = 141$
 $a^2 + b^2 = 125$
 $\therefore XZ^2 = 5(a^2 + b^2)$
 $= 5(125)$
 $= 625$
 $XZ = \sqrt{625} \text{ or } -\sqrt{625} \text{ (rej.)}$
 $= 25 \text{ cm}$

Adapted: Secondary 2 Mathematics Tutorial 2B © Singapore Asia Publishers Pte Ltd & Lim C.K. All rights reserved. Reproducible for home/classroom use only. STRICTLY NOT FOR SALE. Look for other useful resources: www.sapgrp.com